397 research outputs found

    Disk galaxy evolution: from the Milky Way to high-redshift disks

    Get PDF
    We develop a detailed model of the Milky Way (a ``prototypical'' disk galaxy) and extend it to other disks with the help of some simple scaling relations, obtained in the framework of Cold Dark Matter models. This phenomenological (``hybrid'') approach to the study of disk galaxy evolution allows us to reproduce successfully a large number of observed properties of disk galaxies in the local Universe and up to redshift z~1. The important conclusion is that, on average, massive disks have formed the bulk of their stars earlier than their lower mass counterparts: the ``star formation hierarchy'' has been apparently opposite to the ``dark matter assembly'' hierarchy. It is not yet clear whether ``feedback'' (as used in semi-analytical models of galaxy evolution) can explain that discrepancy.Comment: 12 pages, 8 figures. Invited talk in "Galaxy Evolution III: From Simple Approaches to Self-Consistent Models" (Kiel, Germany, July 16-20, 2002) Eds. G. Hensler et al., in pres

    Chemo-spectrophotometric evolution of spiral galaxies: III. Abundance and colour gradients in discs

    Full text link
    We study the relations between luminosity and chemical abundance profiles of spiral galaxies, using detailed models for the chemical and spectro-photometric evolution of galactic discs. The models are ``calibrated'' on the Milky Way disc and are successfully extended to other discs with the help of simple ``scaling'' relations, obtained in the framework of semi-analytic models of galaxy formation. We find that our models exhibit oxygen abundance gradients that increase in absolute value with decreasing disc luminosity (when expressed in dex/kpc) and are independent of disc luminosity (when expressed in dex/scalelength), both in agreement with observations. We notice an important strong correlation between abundance gradient and disc scalelength. These results support the idea of ``homologuous evolution'' of galactic discs.Comment: 9 pages, 6 postscript figures, MNRAS in pres

    Metallicity in damped Lyman-alpha systems: evolution or bias?

    Full text link
    Assuming that damped Lyman-alpha(DLA) systems are galactic discs, we calculate the corresponding evolution of metal abundances. We use detailed multi-zone models of galactic chemical evolution (reproducing successfully the observed properties of disc galaxies) and appropriate statistics (including geometrical propability factors) to calculate the average metallicity as a function of redshift. The results are compatible with available observations, provided that observational biases are taken into account, as suggested by Boisse et al. (1998). In particular, high column density and high metallicity systems are not detected because the light of backround quasars is severely extinguished, while low column density and low metallicity systems are not detectable through their absorption lines by current surveys. We show that these observational constraints lead to a ``no-evolution'' picture for the DLA metallicity, which does not allow to draw strong conclusions about the nature of those systems or about their role in ``cosmic chemical evolution''.Comment: 7 pages, 5 figures, MNRAS in pres

    Evolution of the Milky Way with radial motions of stars and gas I. The solar neighborhood and the thin and thick disk

    Full text link
    We study the role of radial migration of stars on the chemical evolution of the Milky Way disk. In particular, we are interested in the impact of that process on the local properties of the disk (age-metallicity relation and its dispersion, metallicity distribution, evolution of abundance ratios) and on the morphological properties of the resulting thick and thin disks.We use a model with several new or up-dated ingredients: atomic and molecular gas phases, star formation depending on molecular gas, yields from the recent homogeneous grid provided by Nomoto et al. (2013), observationally inferred SNIa rates. We describe radial migration with parametrised time- and radius-dependent diffusion coefficients, based on the analysis of a N-body+SPH simulation. We also consider parametrised radial gas flows, induced by the action of the Galactic bar. Our model reproduces well the present day values of most of the main global observables of the MW disk and bulge, and also the observed "stacked" evolution of MW-type galaxies from van Dokkum et al. (2013). The azimuthally averaged radial velocity of gas inflow is constrained to less than a few tenths of km/s. Radial migration is constrained by the observed dispersion in the age-metallicity relation. Assuming that the thick disk is the oldest (>9 Gyr) part of the disk, we find that the adopted radial migration scheme can reproduce quantitatively the main local properties of the thin and thick disk. The thick disk extends up to ~11 kpc and has a scale length of 1.8 kpc, considerably shorter than the thin disk, because of the inside-out formation scheme. We also show how, in this framework, current and forthcoming spectroscopic observations can constrain the nucleosynthesis yields of massive stars for the metallicity range of 0.1 solar to 2-3 solar.Comment: 27 pages, 25 figures, accepted for publication in Astronomy and Astrophysic

    Radial migration in a bar-dominated disk galaxy I: Impact on chemical evolution

    Full text link
    We study radial migration and chemical evolution in a bar-dominated disk galaxy, by analyzing the results of a fully self-consistent, high resolution N-body+SPH simulation. We find different behaviours for gas and star particles. Gas within corotation is driven in the central regions by the bar, where it forms a pseudo-bulge (disky-bulge), but it undergoes negligible radial displacement outside the bar region. Stars undergo substantial radial migration at all times, caused first by transient spiral arms and later by the bar. Despite the important amount of radial migration occurring in our model, its impact on the chemical properties is limited. The reason is the relatively flat abundance profile, due to the rapid early evolution of the whole disk. We show that the implications of radial migration on chemical evolution can be studied to a good accuracy by post-processing the results of the N-body+SPH calculation with a simple chemical evolution model having detailed chemistry and a parametrized description of radial migration. We find that radial migration impacts on chemical evolution both directly (by moving around the long-lived agents of nucleosynthesis, like e.g. SNIa or AGB stars, and thus altering the abundance profiles of the gas) and indirectly (by moving around the long-lived tracers of chemical evolution and thus affecting stellar metallicity profiles, local age-metallicity relations and metallicity distributions of stars, etc.).Comment: 13 pages, 16 figures, MNRAS in pres

    The chemical evolution of the Milky Way in a cosmological context

    Full text link
    A short overview is presented of several topics concerning the evolution of the Milky Way (MW) in a cosmological context. In particular, the metallicity distribution of the MW halo is derived analytically and the halo metallicity and abundance patterns are compared to those of Local Group galaxies. The inside-out formation of the MW disk is supported by the observed evolution of the abundance gradients, while their magnitude suggests that the role of the Galactic bar has been negligible. Finally, the empirical foundations (age-metallicity relation and metallicity distribution) of the evolution of the solar neighborhood, which is the best studied galactic sub-system, have been seriously questioned recently.Comment: 12 pages, 17 figures. Invited review at CRAL-Conference Series I "Chemodynamics: from first stars to local galaxies" (Lyon 10-14 July 2006), Eds. Emsellem, Wozniak, Massacrier, Gonzalez, Devriendt, Champavert, EAS Publications Serie

    Perspectives in Galactic Chemical Evolution studies

    Get PDF
    In this review I focus on a few selected topics, where recent theoretical and/or observational progress has been made and important developments are expected in the future. They include: 1) Evolution of isotopic ratios, 2) Mixing processes and dispersion in abundance ratios, 3) Abundance gradients in the Galactic disk (and abundance patterns in the inner Galaxy), 4) The question of primary Nitrogen and 5) Abundance patterns in extragalactic damped Lyman-alpha systems (DLAs)
    corecore